Differential selection of acridine resistance mutations in human DNA topoisomerase IIbeta is dependent on the acridine structure.

نویسندگان

  • Chrysoula Leontiou
  • Gary P Watters
  • Kathryn L Gilroy
  • Pauline Heslop
  • Ian G Cowell
  • Kate Craig
  • Robert N Lightowlers
  • Jeremy H Lakey
  • Caroline A Austin
چکیده

Type II DNA topoisomerases are targets of acridine drugs. Nine mutations conferring resistance to acridines were obtained by forced molecular evolution, using methyl N-(4'-(9-acridinylamino)-3-methoxy-phenyl) methane sulfonamide (mAMSA), methyl N-(4'-(9-acridinylamino)-2-methoxy-phenyl) carbamate hydrochloride (mAMCA), methyl N-(4'-(9-acridinylamino)-phenyl) carbamate hydrochloride (AMCA), and N-[2-(dimethylamino)ethyl]acridines-4-carboxamide (DACA) as selection agents. Mutations betaH514Y, betaE522K, betaG550R, betaA596T, betaY606C, betaR651C, and betaD661N were in the B' domain, and betaG465D and betaP732L were not. With AMCA, four mutations were selected (betaE522K, betaG550R, betaA596T, and betaD661N). Two mutations were selected with mAMCA (betaY606C and betaR651C) and two with mAMSA (betaG465D and betaP732L). It is interesting that there was no overlap between mutation selection with AMCA and mAMSA or mAMCA. AMCA lacks the methoxy substituent present in mAMCA and mAMSA, suggesting that this motif determines the mutations selected. With the fourth acridine DACA, five mutations were selected for resistance (betaG465D, betaH514Y, betaG550R, betaA596T, and betaD661N). betaG465D was selected with both DACA and mAMSA, and betaG550R, betaA596T, and betaD661N were selected with both DACA and AMCA. DACA lacks the anilino motif of the other three drugs but retains the acridine ring motif. The overlap in selection with DACA and mAMSA or AMCA suggests that altered recognition of the acridine moiety may be involved in these mutations. We used restriction fragment length polymorphisms and heteroduplex analysis to demonstrate that some mutations were selected multiple times (betaG465D, betaE522K, betaG550R, betaA596T, and betaD661N), whereas others were selected only once (betaH514Y, betaY606C, betaR651C, and betaP732L). Here, we compare the drug resistance profile of all nine mutations and report the biochemical characterization of three, betaG550R, betaY606C, and betaD661N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The specificity of topoisomerase-mediated DNA cleavage defines acridine-induced frameshift specificity within a hotspot in bacteriophage T4.

Acridine-induced frameshift mutations in bacteriophage T4 occur at the precise location in the DNA at which acridines stimulate DNA cleavage by the T4-encoded type II topoisomerase in vitro. The mutations are duplications or deletions that begin precisely at the broken phosphodiester bond. In vivo, acridine-induced frameshift mutagenesis is reduced nearly to background levels when the topoisome...

متن کامل

DNA nick processing by exonuclease and polymerase activities of bacteriophage T 4 DNA polymerase accounts for acridine - induced mutation specificities in T 4 ( frameshift / mutagenesis / 9 - aminoacridine / T 4

Acridine-induced frameshift mutagenesis in bacteriophage T4 has been shown to be dependent on T4 topoisomerase. In the absence of a functional T4 topoisomerase, in vivo acridine-induced mutagenesis is reduced to background levels. Further, the in vivo sites of acridine-induced deletions and duplications correlate precisely with in vitro sites of acridine-induced T4 topoisomerase cleavage. These...

متن کامل

mAMSA resistant human topoisomerase IIβ mutation G465D has reduced ATP hydrolysis activity

Type II Human DNA Topoisomerases (topos II) play an essential role in DNA replication and transcription and are important targets for cancer chemotherapeutic drugs. Topoisomerase II causes transient double-strand breaks in DNA, forming a gate through which another double helix is passed, and acts as a DNA dependent ATPase. Mutations in topoII have been linked to atypical multi-drug resistance. ...

متن کامل

Cell adhesion to fibronectin (CAM-DR) influences acquired mitoxantrone resistance in U937 cells.

Cell adhesion to fibronectin is known to confer a temporally related cell adhesion-mediated drug resistance (CAM-DR). However, it is unknown whether cell adhesion during drug selection influences the more permanent form of acquired drug resistance. To examine this question, we compared the acquisition of mitoxantrone resistance in U937 cells adhered to fibronectin versus cells selected in a tra...

متن کامل

DNA sequence specificity for topoisomerase II poisoning by the quinoxaline anticancer drugs XK469 and CQS.

The two known antineoplastic quinoxaline topoisomerase II poisons, XK469 (NSC 697887) and CQS (chloroquinoxaline sulfonamide, NSC 339004), were compared for DNA cleavage site specificity, using purified human topoisomerase IIalpha and human topoisomerase IIbeta. The DNA cleavage intensity pattern for topoisomerase IIalpha poisoning by CQS closely resembled that of VM-26, despite the lack of any...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 71 4  شماره 

صفحات  -

تاریخ انتشار 2007